Theoretical Analysis of Bayesian Matrix Factorization
نویسندگان
چکیده
Recently, variational Bayesian (VB) techniques have been applied to probabilistic matrix factorization and shown to perform very well in experiments. In this paper, we theoretically elucidate properties of the VB matrix factorization (VBMF) method. Through finite-sample analysis of the VBMF estimator, we show that two types of shrinkage factors exist in the VBMF estimator: the positive-part James-Stein (PJS) shrinkage and the trace-norm shrinkage, both acting on each singular component separately for producing low-rank solutions. The trace-norm shrinkage is simply induced by non-flat prior information, similarly to the maximum a posteriori (MAP) approach. Thus, no trace-norm shrinkage remains when priors are non-informative. On the other hand, we show a counter-intuitive fact that the PJS shrinkage factor is kept activated even with flat priors. This is shown to be induced by the non-identifiability of the matrix factorization model, that is, the mapping between the target matrix and factorized matrices is not one-to-one. We call this model-induced regularization. We further extend our analysis to empirical Bayes scenarios where hyperparameters are also learned based on the VB free energy. Throughout the paper, we assume no missing entry in the observed matrix, and therefore collaborative filtering is out of scope.
منابع مشابه
An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization
The aim of this paper is to provide some theoretical understanding of Bayesian non-negative matrix factorization methods. We derive an oracle inequality for a quasi-Bayesian estimator. This result holds for a very general class of prior distributions and shows how the prior affects the rate of convergence. We illustrate our theoretical results with a short numerical study along with a discussio...
متن کاملUpper bound of Bayesian generalization error in non-negative matrix factorization
Non-negative matrix factorization ( NMF ) is a new knowledge discovery method that is used for text mining, signal processing, bioinformatics, and consumer analysis. However, its basic property as a learning machine is not yet clarified, as it is not a regular statistical model, resulting that theoretical optimization method of NMF has not yet established. In this paper, we study the real log c...
متن کاملUpper Bound of Bayesian Generalization Error in Stochastic Matrix Factorization
Stochastic matrix factorization (SMF) has proposed and it can be understood as a restriction to non-negative matrix factorization (NMF). SMF is useful for inference of topic models, NMF for binary matrices data, and Bayesian Network. However, it needs some strong assumption to reach unique factorization in SMF and also theoretical prediction accuracy has not yet clarified. In this paper, we stu...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملAnalysis of Variational Bayesian Matrix Factorization
Recently, the variational Bayesian approximation was applied to probabilistic matrix factorization and shown to perform very well in experiments. However, its good performance was not completely understood beyond its experimental success. The purpose of this paper is to theoretically elucidate properties of a variational Bayesian matrix factorization method. In particular, its mechanism of avoi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 12 شماره
صفحات -
تاریخ انتشار 2011